2 research outputs found

    New Biomedical Applications Approach using Shape Memory Polymers for Muscles Rehabilitation and the Accompanying Wounds after Severe Bone Fractures

    Get PDF
    This article introduces a new approach for modern applications of medical devices using shape memory polymers to aid in the rehabilitation of muscles and injuries attached to severe fractures.  The group of heaters connected with the splint controls the temperature and humidity inside the affected area. Microcontrollers were attached to the polymer plate in order to directly control the required parameters and changes in addition to giving direct commands to the connected sensors. Because of the property of changing the outer shape of the polymer after being exposed to a certain temperature and returning to the normal shape after the removal of the external influence, the designed polymer plate applies light intermittent pressure on the wound area, muscles, and surrounding tissues, which helps to speed up the rehabilitation of these muscles, especially after She suffered from stiffness due to lack of movement during the period of treatment

    Developing a New Algorithm to Detect Right Thumb Fingernail in Healthy Human

    Get PDF
    Due to significant challenges faced by traditional methods of personal identification like fingerprinting, eye scanning, and voice recognition, new techniques are needed. One such approach involves the use of human nail images for identification and access to personal identification programs and electronic patient files. A novel algorithm, which consists of three stages, has been proposed utilizing the HSV color space detection algorithm, grayscale contrast optimization algorithm, nail segmentation, and image smoothing with a Gaussian filter. This method reduces tested image data and preserves the primary image structure, and has the potential to surpass the accuracy of traditional methods, providing an additional layer of security in personal identification programs and electronic patient files. Nail image detection can be conducted remotely and accessed through standard cameras or smartphones, making it a more hygienic and convenient option than physical contact methods such as fingerprinting or eye scanning. Moreover, the use of nail images for personal identification has several other benefits, especially in situations where traditional methods are not feasible, such as in individuals with skin conditions that prevent fingerprinting. The success of the proposed algorithm in detecting nail images for personal identification has implications beyond individual security and can be applied in different fields, including healthcare and forensic science, to improve identification accuracy and prevent fraud. For example, the use of nail images could help prevent identity theft in healthcare settings, where sensitive information is stored and exchanged
    corecore